Mit dieser Methode konnte nun beispielsweise geklärt werden, welche Rolle die Immunzellen im Zusammenhang mit dem Translokator Protein beim Glioblastom spielen. „Es hat sich gezeigt, dass das Translokator Protein kein spezifischer Biomarker für Immunzellen ist, sondern der überwiegende Anteil des PET Signals auf Tumorzellen zurückzuführen ist“, sagt Laura Bartos, Studierende der Humanmedizin und Erstautorin der Arbeit. „Etwa 90 Prozent der über 7.000 analysierten Proteine haben wir sowohl bei Tumorzellen als auch Immunzellen nachweisen können. Wir waren aber besonders daran interessiert, welche Proteine nur bei Immunzellen vorkommen,“ sagt Bartos. „Das ist uns gelungen, wir konnten Zielproteine ermitteln, die im kranken Gewebe stark vermehrt bei Immunzellen nachweisbar waren, jedoch nicht bei Tumorzellen.“ Davon erhofft sich das Team die Entwicklung von neuen Radiotracern, um die Reaktion von Immunzellen zu verfolgen. „Erste Ergebnisse sind sehr vielversprechend“, so Brendel.
Schließlich nutzten sie 3D-Histologie, eine dreidimensionale Untersuchung einer Gewebeprobe, um das Tumorgewebe in seiner Gesamtheit zu untersuchen und die PET-Signale im Kontext der detektierten Zellzahlen einzuordnen. „In der Summe können wir sehen, ob sich das PET-Signal durch die zelluläre Aufnahme erklären lässt, oder in welchem Ausmaß andere Faktoren, wie zum Beispiel eine beschädigte Bluthirnschranke, ebenfalls einen Beitrag zum Signal leisten“, fasst Bartos diesen Versuchsteil zusammen.